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ABSTRACT ~—
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with unknown, time-varying characteristics is considered. The transmitter, with two

error-correcting codes at its disposal, has to decide which to use at any given time. Two
algorithms for adapting the error-correcting code to the channel conditions are presented;
one of them assumes some knowledge of the distribution of errors in a packet, while the
other makes no such assumption. Both algorithms are based on the observation that,
when a packet’s decoding is successful, the receiver knows the number of errors in that
packet. Both algorithms build a measure for link quality and update it according to the
decoding results. The first algorithm makes use of the number of errors in the packet to
evaluate the probability that the channel is in a given state. The second algorithm
updates its measure according to the highes-rate code that could have possibly corrected
that packet. When this measure is above some predefined threshold, the first code is
used; otherwise the second is employed. The throughput of both algorithms is ascer-
tained and they are found to have excellent adaptivity, approaching that of a transmitter
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L. INTRODUCTION

Automatic repeat request (ARQ) is a technique for ensuring reliable data transfer, which is used in
link-level protocols of computer communication networks {1]. Data are sent over ths link by packets
(frames) to which the transmitter adds parity bits to help the receiver decide whether or not the incoming
data contain errors or not. If there are errors, the receiver sends the transmitter a negative acknowledg-
ment that prompts retransmission. Hybrid ARQ (HARQ) is a modification of this scheme in which the
data are encoded by an error-correcting code [2]. By correcting some of the errors, the use of this code
results in fewer retransmissions. A packet’s reception is unsuccessful only when its error pattern is beyond
the correcting capability of the code, in which case we say that the decoding has failed.

An error-correcting code requires many more redundant bits in the packet than does the error-
detecting code, so that there are fewer data bits in a packet of a given size. The number of redundant bits
grows with the error correction capability. When the channel bit error rate (BER) is high, a packet under
an error-detecting code will have to be retransmitted many times before it is received successfully. The
redundancy of the error correction code is more than offset by the reduced number of retransmissions.
However, when the BER is low few packets have to be retransmutced, even with an error-detecting code.
In this case the full power of the error-correcting code is not utilized; its effect, then, is just a reduction in
the rate at which data are transmitted over the channel. We illustrate this trade-off in Figure 1, which
shows the performance of HARQ for a channel with random bit errors. The ordinate is the channel
throughput, defined as the expect=d number of data bits successfully reccived per packet, normalized to
the packet length, and the abscissa is the probability of bit error. The parameter is the code rate, defined
as the number of data bits divided by the number of bits in the packet. What these curves mean is that, if
the transmitter has several codes at its disposal and it knows the channel BER, it can then select the code

that yields the highest throughput under the (H)ARQ protocol.




In many instances, however, channel error sictistics are not only unknown in advaace, but also vary
with time. In such cases, which are common in ground radio links that are subject to fluctuations in signal
strength and to interference,~ and in spread spectrum, multiple-access channels in which the traffic inten-
sity varies with time - it is not desirable to determine a priori the code rate at which the system will
operate. Rather, we may want to adapt the error correction capability according to channel conditions.
By doing this, we hope to obtain a performance curve that follows the "envelope™ of the curves in Figure
1. Such an ARQ protocol that changes the code rate according to channel conditions is denoted here as an
adaptive kybrid ARQ (AHARQ).

Several versions of AHARQ techniques can be found in the literature. The most common one is
based on encoding the data with an error correcting code, but sending first only the data bits, protecting
them by a high-rate error-detecting code [3,4,5]. If this transmission is unsuccessful, the error-correcting
bits are transmitted. This technique avoids wasting channel capacity at a low SER yet has the power of an
error-correcting code available when it is needed.

Another AHARQ that is aimed at channels with high BER [6] encodes the packet with an error-
correcting code and sends it to the receiver. If the decoding is unsuccessful, the packet is retransmitted
and the two versions of the packet are combined at the receiver (possibly with different weights) and
effectively obtair. a lower-rate code. The receiver stores all the copies of the received packet and attempts

to decode them under all possible combinations. The receiver requests a retransmission only if all these
decoding efforts fail.

The aforementioned AHARQ techniques achieve improved channel throughput by increasing the
complexity of the decoding mechanism as compared with nonadaptive HARQ while using the same feed-
back, namely one bit ("TACK", "NAK") for each transmitted packet. In this paper we select the "dual”
approach and show that it is possible to adapt to varying channel conditions by using the same decoding
procedures as in “regular” ARQ, but slightly increasing the amount of feedback information. The
increased information is based on the bit-error pattern in the packet that is known to the receiver when the

decoding is successful. Of course, when the decoding is unsuccessful, no such knowledge exists. The
.3.




AHARQ algorithms we present in this paper utilize this information to construct and update a measure for
channel quality. The better of two codes available to the transmitter is selected from this measure for use

in the next transmission.

This paper is organized as follows: Section II describes the basic channel models and the assumptions
mace to fadlitate performance evaluation of the algorithms. The first model, in which the channel alter-
nates between states of known error distribution with an unknown parameter, is discussed in Section III,
where we also present an AHARQ algorithm that tunes the code rate in this situation. An algorithm for
adapting the code to variation in a channe] that alternate between states of unknown error statistics can be
found in Section IV. In both cases, the resulting channel throughput is ascertained ty means of a proba-
bilistic model. Section V contains some extensions of these algorithms to allow of more complicated situa-
tions to be handled.




I1. MODELS AND GENERAL CONSIDERATIONS
Consider the following situation: a transmitter sends to a receiver packets of n bits each. The
transmitter has K codes at its disposal, denoted as ¢,,c,, . . . .cx. A code ¢, is characterized by a triplet
(n,r;,1,), the elements of which are the length of the code-word, the code rate (ratio of the number of data
bits in a packet to n), and the error-correcting capability, which is the maximum number of bit errors that
can be corrected by ¢;. We use the convention that r,>r, and 1,<¢, for i<j. Note that in this paper all
the code words have the same length; the purpose of this is to facilitate presentation and analysis. This

assumption can be relaxed very easily.

Assuming random error distribution in the packet, we note that, if the number of errors e in a given
packet is smaller than ¢,

then ¢, is the code with the highest rate that can correct the packet. That is, c, is the code that con-
veys the largest number of data bits in a packet of a given size; hence it is the best code for this error pat-
tern. In general, when

4y_1<esy, 1<isKk |,

the code ¢; conveys the maximum number of data bits among the X available codes. When >y, none of
the codes can decode the packet. Given a set of X codes as described above, the collection of possible
error patterns in a packet can be partitioned into X+1 regions (1,2,..,K+1) so that, for errcr pattern
isK, code ¢, is the best, whereas, for i=K+1, none of the codes is useful.

We assume that the distribution of errors in a packet is governed by a channel parameter, the value
of which we denote as the channel state. Conditioned on the value of this parameter, the error pattern for
each packet is drawn independently of other packets. When the channel state changes, the error distribu-
tion also changes. Thus, knowing this distribution and the parameter value provides enough information
to select the code. Unfortunately, since full knowledge is not available to the transmitter and it thus has

.5




to base its operation on partial knowledge.

We consider here two types of partial knowledge the transmitter possesses: (a) the transmitter knows
the general shape of the distribution of the number of errars in the packet but it does not know the value
of one of its parameters, and (b) the transmitter does not even know the general shape of the distribution.
The first type of knowledge can be encountered in channels with additive white Gaussian noise where the
errors are random and thus the number of errors in the packet has a binomial distribution, a fact known to
the transmitter. The channel state a, is represented by the BER, p;; while in that state, the number of

errors e in the packet is given by

Plela) = B(re,p) = (Y)pr(1-p)r=
The BER may be time varying, for example, as a result of on-off jamming. However, the rate of change

is relatively slow compared with packet transmission time.

The second type of knowledge may be exemplified by a multiple-access spread-spectrum channel,
where the principal source of errors is interference from other transmitted packets. It has been shown
that, in a f. equency-hopping system, the number of interfering packets n, determines the bit error rate in a
packet {7]. Under random channel access protocol the number of interfering packets is often modeled as a

N

/4
; -a,
e

n[!

random variable, independent from packet to packet, with a Poisson distribution, P(n;|a))=

where the parameter a, is called the traffic intensity and, in this case represents the channe] state. The
traffic intensity is usually time-varying, but its rate of change is slow relative to packet transmission time.
Thus, for a given a,, the BER is not fixed as in the previous example but is a random variable that is
independent, identically distributed from packet to packet. However, here we assume that the transmitter
does not even know the general shape of the error distribution.




We assume that the transmitter has a long sequence of data to send to the receiver. When the algo-
rithm dictates the next packet to be transmitted at rate r, the transmitter uses for that packet the next nr
data bits from that sequence. If the packet’s decoding is successful, the transmitter uses the immediately
following bits for the next packet. If the decoding fails, however, that packet is discarded by the receiver
and the transmitter uses for the next packet the first a7 bits from the sequence it had before transmitting
the packet. Here r is the code rate to be used in the next transmission.

The objective of the AHARQ algorithms is to allow the transmitter to the best code given the limited
knowledge it has about the channel state. The performance measure we apply to compare the codes is the
average throughput, which is defined as the expected number of data bits conveyed in a packet normalized
to the packet length.

Under the aforementioned assumptions of conditional i.i.d. error patterns and BERs, a reasonable
approach is, for a given channel state, to use one code exclusively. Consider a specific error pattern distri-
bution P(i), 1si<K+1, where P(i) is the probability that the number of errors falls into the aforemen-
tioned i-th region. If code ¢, is used exclusively the resulting throughput will be

3
Sk) = 'hEP(i) , #

1 4
since 3, P(i) is the probability that ¢, decodes the packet successfully. The code that achieves the highest
i=1

throughput, Sm=m?x{s(i)}. is the best one to use for the specific channel state. This code may have to

be changed when the channel state changes.

Another way of using the codes is to select a code at random according to a distribution &), 1<;<X.
The throughput for this distributions is
.1
S = Eulrléi’(i) . #
Jo1 " Tim1

K
Wethmwanttod:oose{u,},Zuﬁl. such that § is maximum. It can easily be shown that assigning
J=1

4, =1 to the c, that maximizes Eq. (0), and u, =0 otherwise, also maximizes S in Eq. (0).
.7-




Thus, the problem of adapting the code rate to the channel conditions can be coveniently stated as
the problem of determining which of the X available codes achieves the highest throughput for each chan-
nel state. Note that a given code can be the best for more than one state and that, in fact, we may face a
situation in which all the possible channel states are best scrved by a single code of the code set available
to the transmitter. If the state of the channel is known to the transmitter, the problem is trivial because
the best code can be determined from Eq. (0). However, the channel state is usually not known to the
transmitter; it thus has to make a decision based on the sequence of codes it used in the past and the feed-
back it cbtained from the receiver.

We turn our attention now to the receiver. An observation that is fundamental to the operation of
the AHARQ algorithms presented here is the fact that, upon the correct decoding of a packet, the receiver
can tell how many errors the received packet has contained. There is, of course, the possibility of decod-
ing error, but this can be made very unlikely when a small number of error-detecting bits (outer code) is
added to the data portion of the packet.

The receiver of course knows the set of available codes and their error- correcting capabilities. Thus,
from the error pattern in the packet the receiver can also tell which of the codes could have decoded the
packet correctly. It is obvious that, when the receiver fails to decode a packet, it gains none of the forego-
ing information. In fact, all the receiver then knows is that the decoding has failed.

The information gained by the receiver can be fed back to the transmitter by very few bits: in the
first case in which the number of errors is sent back, the maximum length of the feedback message is less
than or equal to log,fx+1, which is much smaller than ». For example, the feedback for a
(code255,0.5,19) code can be represented by S bits. In the second case, the receiver conveys to the
transmitter only the index of the highest-rate code that could have corrected the packet, i.e., the feedback
message is log,(K +1) bits long. Note that the receiver does not have to send the raw information to the

transmitter; it can carry out the algorithm to determine the next code that should be used and notify the




transmitter only as io the index of that code via a log,K bit message. For the rest of this paper we will
refer to the ~ asmitter as the one who executes the algorithms; however, it should be understood that the
receiver could also execute it, as explained above.

In the next two sections we present and analyze the performance of two AHARQ algorithms for
which K=2. These are basic algorithms in the sense that AHARQ for K>2 can be built by X~ 1 operat-
ing basic algorithms in parallel, as discussed in Section V.




. CODE SELECTION FOR CHANNEL STATES WITH KNOWN STATISTICS
In this section we present an AHARQ algorithm that assumes that the transmitter knows the general
shape of the packet error distribution and uses the number of errors in the previous packets to adapt its
code rate to channel conditions.

Suppose the channel alternates between two states, {A;,A,}, each of which has a completely known
error distribution and known parameters. That is, the transmitter knows the conditional distribution of
number of errors e in a packet, given the channel state, P(e|\)), i€{1,2}. Further suppcse that the
transmitter has at its disposal two error correction codes {c,,c,} with the parameters (n,r,,t,), k=1,2.
Recall that the expected normalized number of bits conveyed by a packet encoded by ¢,, when the channel
is in state A, i given by S(k,i)=r,P(est,|\)). If S(1,1)>S5(2,1) and 5(1,2)>5(2,2), code ¢, is the best
under both states and the transmitter should use that code exclusively. When both inequalities are
teversed, only code ¢, should be used. However, if S(1,1)>5(2,1) and §(2,2)>5(1,2) then the
transmitter should use code ¢, whenever the channel is in state A, , i=1,2. This is the case when the

AHARQ algorithm is needed most.

Since the times of transitions between the channel states are unknown to the transmitter, it does not
know for sure what state the channel is in at any given time. However, it can represent its level of belief
that the channel is in a certain state, say A\, by a number ¢ (0<¢<1), which will be referred to as the
subjective probability. The subjective probability will be updated according to the decoding results of every
packet and will be used by the transmitter to select the code for the next packet. The larger q is, the
more certain the transmitter is that the channel state is \; and the more likely it is to use code ¢;. Let us
examine this notion for the simple case of myopic policy, in which the transmitter wishes to maximize
throughput for the next transmission only.

-10-




A. Myopic Policy
When q is the probability that the channel is in state A, at a given instant, and code c, is used, the

expected immediate throughput for the next packet transmission is given by

E(s'k!Q) = rk[qpc(rk'1)+(1-q)Pc(rk'2)]s ki{l,Z} ’ #
where
Pl = S PCe) ’

is the probability of correct decoding under code ¢, and channel state \,. The optimal myopic policy is
one that maximize the immediate throughput, that is, it uses the code c;, which achieves

E(Sli,q) = max{E(S|k,q)}
Using Eq. (0), we find that this policy gives rise to the following threshold criterion for selecting a code: if
rsP,(r)|2)=r P, (r,12)

=
n[P.(r,11)=P.(r,|2)]-r,[P.(r;|1)—P.(r,[2)]
then code ¢, should be selected; otherwise code c,.

, #

B. Updating ¢

Usually the transmitter is interested in transmitting a sequence of packets and in maximizing the
average throughput for the whole sequence. To this end it should update the value of ¢ after every
transmission to obtain a better estimate of the channel state. Let g(k) be the value of the subjective pro-
bability just before the trunsmission of the k-th packet. Using Bayes’ rule, the transmitter computes the
conditional probability that the channel is in state A, given that there were e errors in the previous packet

and that the current value is g(k). This conditional probability becomes the new value. That is,

= q(k)P(e|1)
W+ = TOPE) + (- o OPED) *
The new value can be evaluated by Eq. (0) only if the decoding is successful. If code ¢; was used and e

decoding failed, the value of q(k+1) is given by:

q(k)P(e>4]1)

W+ = JBPE LD+ A=e@)PE>1D)

-11-




As in the case of the myopic policy, the code for the k-th packet, c(k), is determined by q(k): if g(k)
is greater than or equal to some predetermined threshold, the transmitter selects ¢, otherwise it uses code
c,. The threshold may be different, though, from the one in Eq. (0).

Being a probability measure, 0sg(k)<1. We of course want to have ¢(k)=1 when the channel is in
state \, and ¢=0 otherwise, and to have that probability move from one extreme to another soon after
the channel switches states. First it should be noted that, if ¢(k)=0,1, then q(k+1)=0,1 respectively,
regardless of the feedback. This means that, if the transmitter starts with an overly confident view of the
channel, or ever arrives at such an extreme value, it never discards it. Thus, the foregoing extreme values
are useless for our algorithm and the transmitter should never use them. It can easily be shown that
q(k+1) does not achieve the above extremes if g(k) is not at these values. Therefore, if the transmitter
does not use an extreme value for ¢(1), then ¢(k) never acquires an extreme value. In the following dis-

cussion, we thus assume that 0<g(k)<1 for all .

When the channel is in state ), the probability that q(k+1)=g, given that ¢(k)=g, is given by
Prig;lq;} = 2P(e|N.q) #
[ 4

where the sum is over all values of e that, when used in Egs. (0) (0), result in g,.

The direction in which the sequence {g(k)} moves as a function of k is represented by the expected
drift which, given that channel is in state \,, is defined by -

ol q(k)P(e|n)
E[q(k+1)—q(k)|qg(®),\,] = zo 2OPEN) + (1-;(k))P(e|x2)

q(k)P(e>t|\y)
[q(k)r(o:]xl) + (1-q()P(e>Ny) ‘7(")]”(¢>‘|M) , #

where ¢ relates o the code dictated by the value of q(k) and the threshold. In the appendix we prove that

- q(k)]P(e‘N)

the expected drift, given that the channel is in state \,, is positive while for A, it is negative. That is,
{¢(k}) moves in the right directions.

-12-




C. Channel States with Unknown Parameters

It very rarely happens that the channel alternates exactly between two states in which the transmitter
knows the parameter of their error distribution. It is more likely that the channel alternates among several
states, say a,..,ay, for which only the general shape of the distribution is known but not the values of
the parameter. It turns out that the aforementioned algorithm can be extended to this case too. The
transmitter selects two states, say A\, and \,, which have the same error distribution as the a;'s. For exam-
ple, if the a,’s have binomial distribution with uniknown parameters, the A,’s have the same distribution -
each with a specific parameter value. The parameter values for {\;} are selected so that code ¢, achieves
the higher throughput under A, and ¢, is preferred under \,. The states {\} are called the decision states.
Given the outcome of the decoding, i.e., a number of errors in the packet or a decoding failure, the value
of q(k+1) is still calculated according to Egs. (0), (0). That is, the decision states are used in calculating
q(k+1). However, the decoding outcome is determined by the true channel state, say a,, which means

that the probability of moving from g(k) =g to q(k+1)=gq, is given by

Prig,lq)} = ZP(elaq) *

where the summation is taken over all values of e such that Egs. (0) and (0) result in g,.

D. Quantization of q

The metric q is continuous and may acquire any value 0<g¢<1. However, for practical reasons it is
convenient to allow ¢ to take only a finite number of values in the (0,1) interval. Quantizing ¢ will also
fadilitate the performance evaluation of the algorithm over a time-varying channel. As it turns out, quan-
tizing ¢ down to very few levels does not degrade the performance of the algorithm if the quantization
levels are chosen properly.

-13-




A quantization scheme for ¢ is defined by the quantization interval boundaries,
0=d;<d,<d;< - - - <dy_,<dy=1, and by M discrete values of ¢, namely, q,,9,,...,qy, Where
d_1<q;<d,. Now, if there are ¢ errors in the packet and q(k)=g;, the state changes to g(k+1)=g, such
that

d < q,/P(eln)
7717 qP(e|n)+(1—-g)P(e[r)

ifesr,andife>tthencwvaluei3q,forwhidx

=d, #

qP(e>t\)
qP(e>t|\)+(1—q)P(e>t])y)

Note that, if some quantization intervals are too large, it may happen that for a given ¢, all values of e
lead to ¢, =g, in Eqs. (0) and (0). If this is allowed to happen, the algorithm will never leave the value g,
and will thus lose its adaptivity. Therefore, the quantization intervals should be small enough to ensure
high probability for leaving each of them.

E. Performance Evaluation

We use the following model to evaluate the throughput achieved by the aforementioned algorithm:
time is slotted into equally long slots, each of which fits an a bit packet. The transmitter has two codes ¢,
and c,, where ¢, = (n,r,,t;)). The transmitter has a long data sequence to send which it does so by taking
enough data bits in each slot to fit into an » bit packet, which is encoded by one of the above codes. The
channel can be in one of N states, a,,...,ay, where each state has a known error distribution, possibly
with an unknown parameter. The channel changes states at the slot boundaries and the channel state tran-
sitions are done according to a Markov chain with transition probabilities P, (;|a,), which are not neces-
sarily known to the transmitter.

-14 -




Following each transmission, the receiver sends back to the transmitter the number of errors if the
packet decoding was successful or a NAK if it was not. The feedback message is sent instantly on an
error-free channel.

The transmitter keeps the link quality measure ¢ that can acquire one of of M possible values.
Based on feedback information, the value of g is updated according to Egs. (0) and (0); two states )\, and
\, with known statistics are used in these equations. These two states are used for decision purposes, as
discussed above, and they are chosen to make the code ¢, achicve the higher throughput under \; and c,
do so under X,.

Whenever the value of q is greater than or equals a predetermined threshold q,,, the transmitter uses

code c,; otherwise it uses code c;.

Under the above assumptions the dynamics of the algorithms can be described as a Markov chain
{(q(k),a(k)), k=1,2,...}, where g(k) and a(k) are the value of ¢ and the channel state, respectively, just
before the k-th slot. The chain has MN states and the transition probabilities are given by

Plg(k+1),a(k+1)|q(),a®)} = ﬁ;r(ela(k»s(e,q(k),q(m»

+ Ple>t, a()Eea® g+ )] *

where 8(e,q(k),q(k+1))=1 if using the values of e and q(k) in Eq. (0) yields g(k+1), and 0 otherwise.
Similarly, £(e,q(k),q(k+1))=1,0 if using ¢ and q(k) in Eq. (0) yields q(k+1) or not, respectively. Also,
‘q(k)='1 if q(k)zq.h, and 'q(ﬁ)=‘2 otherwise.

When the quantization levels are chosen carefully as explained above, none of the states is an
absorbing state and the chain is thus ergodic with a steady-state probability vector w given by

ws=gP , #
where P is the state transition matrix.

-15-




The throughput § is given by

N th-1 M

§= ‘21[121 w, roP(estla) + 12:;,:'11’ (estyla)] ]

where ﬂl’l is the Steady-state pl‘obability that the channel is in state (ql,a,).

F. Discussion of Numerical Resuilts

The throughput of the algorithm was ascertained numerically and the results are shown in Figures
(2)-(4). In all these figures the transmitter has two codes, (255,1,0) and (255,0.5,19). The errors in a
packet are random and the conditional distribution of the number of packets is binomial with parameter
(BER) a; which varies with time. In computing q, the transmitter uses two decision states with the above
error distribution and with parameters A\, =0.001 and A,=0.01. The channel alternates between two states
a, and a,, which are not necessarily the same as the decision states.

To apprediate how well the algorithm works, we compare the throughput it achieves to that achieved
by three other simple schemes:
(1) Transmitter uses code ¢, only, regardless of feedback.
(2) Transmitter uses code ¢, only, regardless of feedback.
(3) Transmitter knows the exact channel state at all times and thus always matches the best code for that
state. This scheme, called the ideal observer, clearly sets an upper bound on the throughput achievable by

a transmitter with limited information.

Figure 2 depicts the throughput achieved by the algorithm as a function of the threshold level. The
channel transitions are symmetric, which means that the channel’s average stay in a state tefore making a
transition is equal for both states. The abscissa in Figures 2(a)-(c) is the sojourn time - the average stay in
a state expressed in packet transmission lengths. Four values of sojourn time are depicted in these figures:
100, 10,3. In Figure 2(a) the channel states are a,=0.0008 and a,=0.03. In this case we see that the
algorithm’s throughput is better than that achieved by either of the codes when it is used exclusively even
for very small sojourn times. When the channel stays at the state longer, the throughput approaches the
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upper bound achieved by the ideal observer. Note that the threshold level has little effect on the
throughput, so that its selection is not a critical design issue.

In Figure 2(b) the states are a,=0.004 and @,=0.06; in both of them code c, is preferred. In this
case the threshold level and the sojourn time have only slight effect on the througtput. In Figure 2(c) the
separation between the channel states is smaller and here, at short sojourn times, the threshold determines
whether the algorithm is better than ¢, or worse. When the sojourn time is medium to large, the
algorithm’s throughput is larger than that of ¢, and approaches the ideal curve.

Figure 3 depicts the effect of the sojourn time on the throughput in a channel with symmetric transi-
tions. Note that the algorithm approaches the ideal curve for relatively short sojourn times. Figure 4 dep-
icts the performance of the algorithm for a channel with asymmetric transitions. In this case the channel
spends an average of 20 packet transmission times in state a;, and a different time in a,. The abscissa of
Figure 4 is the average time spent in state a,. Note that the algorithm follows the ideal curve quite
closely.
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IV. AN ALGORITHM FOR A CHANNEL WITH UNKNOWN ERROR STATISTICS
The algorithm in the previous section made direct use of the number of errors in the packet, which
was possible because the general characteristics of the error statistics were assumed to be known. This
knowledge may not always be available, since very often there are many diverse factors that influence the
error pattern and their overall effect cannot be quantified. In this section we consider a channel with unk-

nown distribution of the error patterns.

As in the previous case, here too, when a packet is sent by code ¢; and it is successfully decoded, the
number of errors in that packet is known to the receiver. Also known to it is the set of codes available to
the transmitter and their characteristics {(n,r;,¢,)}. Thus, for each error pattern observed in a decoded
packet, the receiver can tell which of the other available codes could have been used to decode that packet
successfully. It is reasonable to assume that, if the code of rate r; could decode the packet all other codes
with rates r,<r, could have done so too. Thus, the receiver checks only those codes with rates higher than
the code that was actually used. The receiver sends to the transmitter on the feedback channel the index
of the highest-rate code that could have decoded that packet successfully.

As before, when the packet’s decoding is unsuccessful, the receiver sends only a NAK to the
transmitter. In both cases, the decoding’s success information is used by the transmitter to update its
knowledge about the channel and to determine the code for the next transmission.

The basic algorithm is the one that decides between two codes, say, ¢, and c,, where, say, r,>r,,
(¢,<t,). In this case, the set of all the possible error patterns is partitioned into three groups: (1) those
that can be corrected by both codes, (2) those that can be corrected only by ¢,, and (3) error patterns that
can be corrected by neither of these codes. In the following discussion we assume that, while time the
channel is in a given state, say a,, the error patterns are independent from packet to packet. The proba-
bility that an error pattern falls into group i, when given the channel is in state a; i dcnoted by P,(i),
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i=1,2,3.

We propose that the transmitter keeps a metric, denoted by x, that measures how well one code per-
forms as compared with the other code. The transmitter bases its code selection on this metric. Speifi-
cally, when the transmitter uses code c, and the error pattern falls into group 1, this means that the
transmitter could have achieved throughput greater by r; —r,, had it used code ¢, instead. Thus, in this
case x is increased by the amount r,—r,. If the error patterns falls into group 2, the meaning is that, if
the transmitter had used ¢, for this packet, it would have lost the whole packet whereas under c, it
obtained the throughput of r,. The transmitter, therefore, subtracts 7, from the value of x in this case. If
the error pattern falls into group 3, then x remained unchanged since none of the codes can convey any
data.

Consider now the case in which the transmitter uses code ¢,. If the error pattern falls into group 1,
here too, x is increased by r;—r,. However, the receiver cannot distinguish between error patterns 2 and
3 since in both cases the decoding is unsuccessful under ¢,. Thus, when the transmitter is operating with
¢, the x can be either decreased by r, or remain unchanged for both error pattern groups. In the follow-

ing discussion we assume that the former possibility is used.

We denote by x(k) the value of x just before the &-th packet transmission and, as before, c(k) is the
code used for the k-th packet. The transmitter starts with x(1)=0 and uses ¢, for the first packet. It
updates x according to the feedback information as described above and uses the value of x(k) to deter-
mine c(k+1) according to the following rule:

If x(k)=<0 then c(k+1)=c,, else c(k+1)=¢c,
Suppose now that the channel is in a given state @), with error region distribution

{P/(1),P/(2),P/(3)}. Recall that since the packet error patterns are i.i.d., one code should be used
exclusively while the channel is in this state. If code c, is used in state «,, the throughput will be

k
S,(k) = szpl(i) ‘=1,2 . 4
i=1
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For the distribution, {P,(i)}, code c, is better than c; if

rnPQ)>r,[P(1)+P(2)] , #
and code c, is better otherwise. Since x(k) determines c(k) according to the above rule, we want {x(k)} to
be positive when {P,(i)} is such that inequality Eq. (0) holds and be negative when it is reversed.

The expected drift of {x(k)} for that distribution is given by

Els(k+ 1) ~x(®)x())50,0,] = [y =r}Py (1) =rsP/(2) #

Elx(k+1)-x(0)k(8)>0,0.] = [ry—r )P (D)= rofP/Q)+P3)] . *

Note that for x(k)=0 the drift is positive when the inequality Eq. (0) is true and negative when it is
false. That is, when c, is used (x(k)=0), the feedback provides the transmitter with enough information
so that the sequence {x(k)} increases or decreases according to the conditions in Eq. (0). Thus, under
{P,(i)} for which Eq. (0) is satisfied, if x(k)=0, the sequence {x(k)} will move up and eventually cross the
threshold so that the correct code, ¢; will be used. When x(k)=<0 and the inequality sign in Eq. (0) is
reversed, {x(k)} will tend to remain negative, thereby causing c, to be used, which is the better code for
this case.

The situation is slightly different for positive values of x(k) in which ¢, is used. For this code, the
error pattern groups 2 and 3 are indistinguishable because ¢, cannot correct any of them. This causes the
drift when x(k)>0 to be positive or negative under slightly different conditions from those given in
Eq. (0). Although in most cases these different conditions do not degrade the algorithm’s performance,
there are some distributions {P,(i)} for which such degradation may occur. This happens when the channel
is in state a, for which the following double inequality holds:

r[P(1)+P(2))<r,P(1)<r, .
For this distribution, Eq. (0) holds, implying that ¢, should be used. Indeed, the drift for x(k)=<0 is posi-
tive, which makes the algorithm less likely to use ¢,. However, when x(k)>0, Eq. (0) yields negative
drift, because of the right inequality in Eq. (0), which tends to push {x(k)} down. The total effect is that
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{x(k)} oscillates around the zero level, thereby accepting negative values more often than if it had stayed at
a level far away from the threshold. Note that when x(k)=<0, code ¢, is used with the attendant loss of
throughput, since ¢, is better for this distribution.

The region of P(1) and P(2) for which Eq. (0) bolds is depicted in Figure 5. For all other possible
combinations {P,(i)}, the drift has the proper sign for both negative and positive values of x(k), thus mak-

ing {x(k)} move in the right direction according to Eq. (0).

When the channel state changes so that the inequality Eq. (0) is reversed, the code should also
change to provide the highest possible throughput. That is, {x(k)} should change sign as fast as possible.
If {x(k)} is not bounded from above and below, when the channel conditions persist for a long time {x(k)}
will grow in either the positive or negative direction. A large value of {x(k)} results in a long time to
reach the threshold and to switch codes after channel state changes, implying loss of throughput.

To expedite threshold crossing upon state change we set upper and lower bounds B, >0 and B, <0,
respectively which we do not allow {x(k)} to cross. Thus, when the error pattern is in group 1

x(k+1) = min(B, x(k)+r,—ry) , #
and when the pattern is in group 2 and x(k) =0, or in groups 2 or 3 and x(k)>0:

x(k+1) = max(B,,x(k)—r,) . #

The boundaries, denote as B,, B, should be low enough to allow for quick code change when it is needed,
as well as high enough to keep small the probability of level crossing as a result of statistical fluctuations.

When {P(i)} is such that for x(k)>0 the drift is negative and for x(k)=<0 it is positive (Egs. (0),
(0)), {x(k)} fluctuates around the zero level regardless of the level of B,. Since at this region ¢, should be
used, we increase the time {x(k)} is positive by occasionally setting x(k) to B, upon zero crossing from
below. We thus modify the algorithm as follows: whenever an error pattern of type 1 occurs such that the
upward step (of size r,—r,) of x(k) causes it to cross the zero level, x(k) makes this normal step with pro-
bability 1—¢,. and with probability g, x(k) is set to the value of B,. Eq. (0) now applies only in the case
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of x(k)>0 or x(k)s —(r,—r,). However when —(r,—r;)<x(k)=0, the new value of x upon error pattern
of type 1 is given by:

x(k+1) = B . *

x(k)+r,—r, wp. 1-gq,
{ ] W.p . qc

A. Performance Evalustion

The model we use to evaluate the performance of this algorithm is similar to that of the previous
section. Channel time is composed of fixed-size slots equal in length to the packet size. The feedback is
sent to the transmitter instantly on an error- free channel. The channel alternates among N possible
states, (ay, . . . ,ay) where each state a;, (j=1,2,..,N), i characterized by a distribution {P,(i)} of the
error pattern groups. The channel may switch states only at slot boundaries and doing according to a Mar-

kov chain with transition matrix P(a(k+1)=q,|a(k)=a,)=P,(ji).

Since r,, r, are rationals, we can represent the two nonzero steps of x, namely, r,—r, and r, by
integers. As before, B, and B, are the lower and upper bounds, respectively which means that the channel
metric x can take B = B, +5,+1 values. Thus, the process {(a(k),x(k)), k=1,2,...} is an ergodic Markov
chain.” The chain's transition probabilities are given by

P(a(k+1)=a;,x(k+1)=x/|a(k)=a;,x(k)=x,) = P, ()P (ln) , #

P(1)g.  ifj=B, ad —(r,~ry)<n=0

P(1)(1-q,) if j=n+r,—r,and —(r,—r,)<n=0

P,(1) if j=min(B,,n+r,~r,) and n<—(r,~r,) or n>0

PGIm) = 1p(2) if j=max(B,n—r,), n<0 #
P(2)+P,3) if j=n—r,, n>0

P(3) ifj=n,ns0

.

—
For some combinations of 7y, r, X(k) never acquires some of the values between B, and B, we consider anly the values x(k)
actually takes.




If we denote by m(j,n) its steady state probability that the chain is in state (a,,x,), the throughput of
the algorithms can be written as:

. ’.
s = i }(:‘, aGi,m)r[P)+PQ)] + 3 n(im)rP)| . #
ne]

i=lln=-B8,

B. Discussion of Numerical Results

The performance of the algorithm is depicted in Figures 6-8. The two codes used in these curves are
¢, = (255,1,0) and c, = (255,0.5,19). Figure 6 shows the throughput obtained by the algorithm when the
channel alternates between two states with equal expected sojourn time in both states (symmetric transi-
tions). We see that, for very short sojourn times, the throughput is better than that achieved by using a
single code only, that is, using no information. As the sojourn time increases, the throughput gets closer
to the one achieved by an ideal observer.

Figure 7 shows the effect of g, on the throughput. In Figures 7(a) and 7(b) the channel stays in one
state only. However, the distribution {P(i)} of this state is such that the drift has positive sign for x<0
and negative otherwise, a situation that causes {x(k)} to oscllate around the zero level and thereby to
lower throughput. For this distribution code ¢, is better and we can see that, as the probability of jumping
to B, upon zero crossing from below increases, so does the throughput. Thus, one should operate in such
situation with a large value of g.. One may wonder whether increasing ¢, will have negative effect when
{P(i)} is not in the region depicted by Figure 5. Figure 7(c) shows that, for one such distribution, g, has

very little effect.

Figure 8 shows the improvement in throughput that can be achieved by increasing B, and B,. We
sce that the improvement is rather small. Figure 9 compares the performance of the algorithms described
in the current and the previous sections. To compare them on an equal basis we assumed the number of
errors in the packet to be binomially distributed and the two BERs to be 0.008 and 0.02. The channel
alternates between these two states and make symmetric transitions. The same two codes that were men-

tioned above serve both algorithms. The curves in Figure 9 show that both algorithms increase their
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throughput as the sojourn time increases. However, the algorithm of the previous section, which uses
knowledge of the error distribution, achieves higher throughput than does the algorithm of the current sec-
tionm which does not use such knowledge.




V. EXTENSIONS

The AHARQ algorithms we have presented in Sections III and IV select one of two codes to use in a
time-varying channel with some unknown characteristics. The code selection is based on a measure for
channe] quality that is updated by utilizing enhanced feedback sent from the receiver to the transmitter.
The performance curves for these algorithms show that the throughput achieved is not very far from that
achieved by an ideal observer who has all the channel information.

These algorithms can be extended to the case in which the transmitter holds K>2 codes. For a set
of codes cy,..,cx with 7,>...>ry, the transmitter performs out K—1 two-code algorithms in parallel for

the pairs of codes (¢;,¢,), (€3,¢3),.., (cx-1:¢x) and selects the code with the highest throughput.

If the k-th packet is transmitted with code ¢; and the decoding is successful the receiver knows the
number of errors in this packet and also which of the X codes could have been used to quality measures,
gy 4+1 OT X 44y. This updating is more complicated when the decoding of the c; packet fails. The receiver
then knows that, for all j, j<i, the code ¢, would have also failed. However, there is not much that can
be said about the possible success of ¢;, j>i. One option is not to update the measures for the algorithms
that compare these codes. Another option is to assume that, for all j>i, code ¢, could have decoded that
packet correctly. Which of these alternatives is better will depend on the channel mode.

The selection of the best of K>2 codes is a little more complex than in the case £’'=2. We propose
that the algorithms select the highest rate code, say, ¢, for which the quality measure g, ,,, is above the
threshold (or x,,,, is above zero). The details of this selection and the performance evaluation of

multiple-code algorithms will be presented in a forthcoming paper.




Other extensions, such as operation over a channel with a large propagation delay and a noisy feed-
back channel, may also be of interest. They will be the subject to future research.




Elg-qlgM) = q(1-9) |3

APPENDIX: Evalustion Of The Expected Drift For ¢
In this appendix we prove that, for channel states \,, A, the drift under A, is positive,
E(g(k+1)=q(k)|q(k),1)>0, and under \; E(q(k+1)—q(k)lq(k},2)<0.

Proof: Denote by q, ¢ the values of ¢(k+1), q(k), respectively. By definition, when code ¢, is used

Pler)q _
P(e\)q + Ple[r)(1~q)
-9 P(e>4|\)g (A1)
P(e>t4in)q + P(e>4|2)(1-4q) Tq e>h

q esy

Following some simple algebraic manipulation, the drift can be written as

b PleA)=Plelry) Ple>t/M)=Ple>1M)

FEest)g+ A-aPEestig &)

ZFene+A-gPeng €M *

Consider first the denominator of the term in the summation in Eq. (A2). Let e, be the set of
values of e such that P(e|\,)=P(e|\,) when eee,. Since 0<¢<1,

P(e[A)=P(e[r)q+(1-q)P(e[\)SP(e]N,) for eee, (A3)

P(e[\)sP(e|h)g+(1—-q)P(e[A\)=P(e\,) otherwise; (A4)
Thus, for eee, the numerator is positive; otherwise it is negative. Hence, for both cases:

P(e[\)—P(e[r) P(e[M)=P(e[r)

Plela+A-gPeny CM = —peny = FEhI=Peh) . (A3
Similarly, for e>1
P(e>1 M) =P(e>1]\) P(e>y\)=P(e>1 )
P(e>4[A)g+(1=q)P(e>1\y) Ple>4ln) > P(e>t\y) Ple>th) . (A5

Thus, for all 0<¢<1

Elg —qla.\] > 4(1-q)[)_‘lolP(elll)-P(elkz)]+P(¢>r.IM)-P(¢>!;Ikz)l =q(1-9)0 . (A7)
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Under state \, the drift is given by

d P(e|\)=P(e[r) P(e>4|\)=P(e>]\,)

Ela -alad = 400 2 5Er S G-gpEn)” P P+ A-gresipy &
< q(l-q)lgll’(elh)-l’(eIk:)]+P(¢>';IM)-P(¢>1.|R;)] =q(1-¢)0 . (A8)
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